Question Paper Code: 51510

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2024

Second Semester

Electronics and Communication Engineering

PH 3254 - PHYSICS FOR ELECTRONICS ENGINEERING

(Common to Electronics and Telecommunication Engineering)

(Regulations 2021)

[Also common to PTPH 3254-Physics for Electronics Engineering for B.E. (Part time) Second Semester - Electronics and Communication Engineering-Regulations-2023]

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What is the packing factor of Simple Cubic (SC) and Body-Centered Cubic (BCC) crystal structure?
- 2. Define the terms wafer flats and notches.
- 3. The thermal conductivity of copper at 300 K is 470 W/m/K. Calculate the electrical conductivity. Given Lorentz number, $L=2.45\times10^{-8}W\Omega K^{-2}$.
- 4. Elucidate the spin arrangement of Para and Ferro magnetic materials.
- 5. How does carrier transport in semiconductor different from metals?
- 6. The Hall co-efficient of a specimen of doped silicon is found to be $3.66\times10^{-4}~\text{m}^{-3}/\text{C}$. The resistivity of the specimen is $8.93\times10^{-3}~\Omega\text{m}$. Find the mobility and density of charge carriers.

Given : $R_{\rm H} = 3.66 \times 10^{-4} \, {\rm m}^{-3}/{\rm C}$, $\, \rho_{\rm e} = 8.93 \times 10^{-3} \, \Omega \, {\rm m}$.

- 7. What are different types of Optical materials?
- 8. Mention the properties of the light detectors.
- 9. What is a quantum dot? How its colour can be changed?
- 10. What is spintronics? Mention its significance.

PART B — $(5 \times 16 = 80 \text{ marks})$

11. (a) Write a short note on

- (i) crystal system (4)
- (ii) packing factor (4)
- (iii) wafer surface orientation and (4)
- (iv) diamond cubic structure (4)

Or

- (b) Describe the steps to determine the miller indices and also mention its importance.
- 12. (a) Derive an expression for the density of energy states in a metal.

Or

- (b) What is a GMR device? Describe the construction and working methods of GMR.
- 13. (a) Derive an expression for density of electrons in conduction band of an n-type semiconductor.

Or

- (b) State and explain Hall effect. With necessary theory and diagram, derive the Hall coefficient of a semiconductor.
- 14. (a) Discuss the optical process in quantum well with necessary diagram.

Or and other

- (b) Explain the principle and working of LED with a neat diagram and mention its advantages and disadvantages.
- 15. (a) Write a detailed note on quantum confinement and quantum structure.

m Or

(b) Design a transistor in which the current flows from source to drain due to movement of only one electron at a time. Explain the conditions necessary for this single electron phenomenon and the working of the Single electron transistor.